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We present an extensive Monte Carlo simulation study on the nonequilibrium kinetics of triangular antifer-
romagnetic Ising model within the ground state ensemble which consists of sectors, each of which is charac-
terized by a unique value of the string density p through a dimer covering method. Building upon our recent
work [Phys. Rev. E 68, 066127 (2003)] where we considered the nonequilibrium relaxation observed within
the dominant sector with p=2/3, we here focus on the nonequilibrium kinetics within the minor sectors with
p<<2/3. The initial configurations are chosen as those in which the strings are straight and evenly distributed.
In the minor sectors, we observe a characteristic spatial anisotropy in both equilibrium and nonequilibrium
spatial correlations. We observe emergence of a critical relaxation region (in the spatial and temporal domain)
which grows as p deviates from p=2/3. Spatial anisotropy appears in the equilibrium spatial correlation with
the characteristic length scale &, y(p) diverging with vanishing string density as &, y(p) ~p~> along the vertical
direction, while along the horizontal direction the spatial length scale diverges as &, y~ p~!. Analytic forms for
the anisotropic equilibrium correlation functions are given. We also find that the spin autocorrelation function
A(t) shows a simple scaling behavior A(t)=.A(t/74(p)), where the time scale 74(p) shows a power-law diver-
gence with vanishing p as 74(p) ~ p~¢ with ¢=4. These features can be understood in terms of random walk

nature of the fluctuations of the strings within the typical separation between neighboring strings.
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I. INTRODUCTION

The antiferromagnetic Ising (AFI) model on a triangular
lattice is an archetypical frustrated spin system [1]. The
Hamiltonian of the AFI model on a triangular lattice in two
dimensions is given by

H=JY o0, (1)
@

where o;==+1 is the Ising spin at site i, />0 the interaction
strength, and (ij) denotes nearest neighbor (NN) pairs.
Throughout the paper we set J=1. The system is frustrated
since the three bonds in every elementary triangle (plaquette)
cannot simultaneously satisfy the AF interaction. This
geometry-induced frustration leads to an exponentially large
number of ground state degeneracies, rendering nonzero en-
tropy density at zero temperature [2,3]. Therefore no genuine
long-range order exists even at zero temperature. However, it
is remarkable that the ground state exhibits a critical phase in
which the equilibrium spin correlation function decays alge-
braically with distance r as C,(r)~r~7 with the critical ex-
ponent 7=1/2 [4—6]. Finite temperature phase transition has
been predicted in the AFI model with higher spins [7,8].
Recently there has been a renewed interest on the present
model with elastic distortions [9-12] or with a staggered
field [13] in the context of glassy dynamics which may give
insights into the nature of the glass transition. It should be
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emphasized that the macroscopic degeneracy of the ground
state does not always guarantee a critical state. For example,
the ground state of the AFI model on Kagomé lattice has
extensive entropy, but is noncritical: spatial spin correlations
decay exponentially. Although spatial connectivity is thought
to have something to do with the existence of the critical
phase (Kagomé lattice can be obtained from triangular lattice
by removing sites in a regular manner), it remains an open
question as to what conditions are required to have a critical
state [14-16].

It has been shown [13] that via a dimer-covering method
[17] the macroscopically degenerate ground states of the tri-
angular AFI model can be classified into sectors character-
ized by string density p. In any ground state only two bonds
satisfy the AF interaction in each plaquette. Since two neigh-
boring plaquettes always share a common bond, as shown in
Fig. 1(a), one can draw a line (dimer) from the center of one
plaquette to that of the other, intersecting the shared frus-
trated bond. Then every plaquette center becomes the end
point of a dimer. Now we make a dimer-covering in the
so-called “standard” ground state which has alternating up-
spin rows and down-spin rows, as shown in Fig. 1(b). When
these two dimer-covered configurations are superimposed, a
string configuration shown in Fig. 1(c) is obtained.

The number of strings is conserved under local dynamics
such as spin-flip or spin-exchange kinetics. Nor can the
strings intersect with one another. It has been shown [13] that
each ground-state sector has a unique number of strings.
Therefore a ground state belonging to a certain sector cannot
evolve into other ground states belonging to different sectors.
The time evolution of a ground state is always confined
within the sector which the initial ground state belongs to. In
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FIG. 1. (a) As an initial step for constructing a string represen-
tation (through dimer covering) for a given ground state configura-
tion, one draws a line (dimer) from one center of a plaquette to the
center of a neighboring plaquette when the shared bond (between
the two neighboring plaquettes) does not satisfy the antiferromag-
netic interaction (in other words, the two spins for the bond are
parallel). (b) As the second step, one constructs a dimer covering [in
the same way as in (a)] for the so-called “standard” ground state
which has alternating up-spin rows and down-spin rows. (c) Finally,
one combines the results of the above two steps to get the final
string representation.
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FIG. 2. The entropy density S(p) as a function of the string
density p, obtained from a numerical integration of Eq. (2). S(p)
becomes maximum at p=2/3, and the maximum entropy
8(2/3)=0.323066.

this sense, the dynamics within the ground state manifold is
nonergodic. However, since each sector with nonzero string
density has infinite number of ground states, one may regard
each sector as an ergodic component: the dynamics is er-
godic within each sector. One can thus talk about a
“restricted” equilibrium in each sector. The number of
ground states in a sector with string density p, N(p), has
been exactly computed using a transfer matrix method as
N(p)=exp[NS(p)], N being the number of spins with the
entropy density given by an integral [13]

S(p):fp ln{Z cos(zx)}dx. (2)
0 2

Figure 2 shows the entropy density S(p) as a function of p,
which is obtained from numerical integrations of Eq. (2).
S(p) becomes maximum at p=2/3 with the maximum en-
tropy S(2/3)=[3" In[2 cos(gx)]dx=0.323066 is the entropy
derived by Wannier [2] five decades ago. The entropy
density is linearly proportional to the string density as
S(p)=(In 2)p for small p, whereas its derivative with respect
to p tends to diverge as p approaches unity. The exponential
dependence on N of the degeneracy implies that the sector
with p=2/3 dominates other sectors in its number of states.
We thus call the sector with p=2/3 the dominant or major
sector, and call the other sectors the “minor’” ones.

In a recent work [18] we focused on the kinetic aspects of
the model, attempting to characterize the nonequilibrium
critical dynamics of the model using a single spin-flip Monte
Carlo kinetics. Here we recapitulate what we have observed
in that work. We first examined the kinetics ensuing from an
instantaneous quench starting from high-temperature disor-
dered initial states to the zero temperature. Initial disordered
state has high population of local defects [19] which are
identified as unit plaquettes with the three spins at corners
having the same up or down directions. Via pair annihilation
of defects the system evolves towards the equilibrium
ground states (belonging to the dominant sector). A unique
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feature of the kinetics here is that due to the macroscopic
degeneracy of the ground states the background configura-
tion on which defects move, fluctuates via frequent flips of
the so-called loose spins [20] whose flip requires no energy
cost. We found that these fluctuations of the loose spins in-
teract with defect motions and thereby significantly affect the
diffusive properties of the defects. The kinetics reveals a
single growing length scale &(¢), the nonequilibrium spin cor-
relation length, which can be extracted from the dynamic
spin correlation function C(r,7). From the viewpoint of de-
fects, this length scale can be regarded as the mean separa-
tion between defects. The kinetic process exhibits a self-
similarity under rescaling of the distance with &(z), which is
manifested in the scaling collapse of C(r,r) for various times
t as C(r,t)=r""F(r/ &(t)) with »=1/2. The scaling function
F(x) is independent of time .

One controvertial aspect of the nonequilibrium kinetics is
the time dependence of the growing length scale &(¢). Earlier
simulation work by Moore ef al. [21] contends that the ki-
netics is the same as that observed in the two-dimensional
XY model, and therefore that the length grows in time as
&1)=(t/In1)"* with the dynamic exponent z=2 [22-25]
which exhibits a logarithmic correction. Contrary to this
viewpoint, the present authors [18] have argued that &(r) ex-
hibits a genuine subdiffusive power law growth (without
logarithmic correction), &(f) ~ t'/% with z=2.33. In particular,
we attributed this subdiffusive growth to the mutual interac-
tion of defects and loose spins. We argued that this interac-
tion makes the defects perform a restricted random walk: the
ground state fluctuations via loose spins induce microscopic
blocking (on average) of the defect motion. Further works
are needed to fully understand the nature of defect motion in
the present model.

We have also considered the nonequilibrium relaxation
dynamics within the ground state ensemble, focusing on the
relaxation within the dominant sector with p=2/3. The
initial state employed was a ground state in which the
strings are straight and regularly spaced so that the intial
state has maximum number density of the loose spins
p(t=0)=p=2/3, as shown in Fig. 3(a). For this initial con-
figuration, all spins in each sublattice A, B, C have the same
sign, and hence each sublattice is fully ordered. Thus the two
sublattice magnetizations (A and B) are equal and opposite to
the third sublattice magnetization: my=mp=-mc=1, which
is subject to permutation symmetry of the three sublattices.
Since the initial configuration is a ground state, it has no
defects, and the time evolution proceeds via flips of the loose
spins only. In order to probe the nonequilibrium relaxation
from this “ordered” initial state, we measured the nonequi-
librium spin correlations in each sublattice. In fact, by per-
mutation symmetry these correlation functions are the same.
Hence let us call any one of them as C(r,7). At a given time
t, the correlation function C(r,t) approaches a nonzero value
at large distances which is actually the square of sublattice
magnetization mﬁ(t). This saturation sets in at larger
distances for late times. This means that the nonequilibrium
correlation length &(7) of spin fluctuations grows in time. We
found that the correlation of spin fluctuations Cg(r,?)
=C(r,1) —mg(t) also shows a critical dynamic scaling behav-
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FIG. 3. (a) One of the ground state configurations with the string
number density p=2/3 that is employed as the initial state for the
nonequilibrium relaxation dynamics within the dominant sector of
the ground state ensemble. This configuration can be considered as
the maximally ordered state in the sense that the lattice can be
decomposed into three (A, B, and C) regular triangular sublattices
each of which is fully ordered (e.g., two with up spins and the other
with down spins). Encircled are the loose spins whose flips do not
cost energy. (b) One example of the ground state configurations
with the string number density p=1/3 that is employed as the initial
state for the nonequilibrium relaxation dynamics within the corre-
sponding sector of the ground state ensemble.

ior Cp(r,t)=r""G(r/ &t)), where &(t) grows diffusively in
time, i.e., &) ~ ¢ with z=2. This purely diffusive growth
of the correlation length should be contrasted with the sub-
diffusive growth of the correlation length in the presence of
annihilating defects. The critical dynamic scaling implies
that the sublattice magnetization should decay algebraically
in time as mé(t) ~ "% with 5/z=1/4. We therefore observed
an interesting initial state dependence of the kinetics, which
is due to highly complex structure of the degenerate ground
states.

In the present work we extend our aforementioned previ-
ous study to minor sectors with p=1/(3n) with
n=1,2,.... We aim to characterize the nonequilibrium ki-
netics of the system evolving towards the equilibrium state
within each minor sector under single spin-flip kinetics. In
particular we focus on distinct dynamic features compared to
those observed in the dominant sector with p=2/3. We find
that, as p is reduced from 2/3, the relaxation dynamics as
well as the final equilibrium spatial correlation functions ex-
hibit a characteristic spatial anisotropy between the direction
parallel to the initial strings (vertical direction in our defini-
tion) and the horizontal direction which is perpendicular to
the strings. Accordingly, the dynamic spatial correlation
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functions measured along the vertical and horizontal direc-
tions can be separately collapsed into distinct scaling func-
tions. As a by-product we obtain an analytic form for the
equilibrium spatial correlation function. This can be regarded
as a generalization of the equilibrium spatial correlation
functions for p=2/3 [4]. In the equilibrium correlation func-
tions, the correlation length scale &, (p) along the vertical
direction tends to diverge with vanishing string density as
& v(p) ~p~2, while in contrast, the length scale €, 4(p) along
horizontal direction exhibits a divergence with &, ;(p) ~p~!
which is proportional to the separation between neighboring
strings.

Along the vertical direction, in the minor sectors, the
equilibrium spin correlation function exhibits a slower relax-
ation in the short distance. As argued below, this turns out to
be another type of critical relaxation. The same critical re-
laxation as that in the dominant sector is recovered at larger
distance. This new critical region becomes larger as p is
reduced, diverging as inverse square of p as mentioned
above. The same type of behavior is reflected in the temporal
relaxation of the spin autocorrelation function. When p is
smaller than but close to p=2/3, the corresponding critical
behavior starts to appear in the short time regime, and after
that the relaxation shows the same critical behavior as in the
case of p=2/3. As p becomes further reduced, this new criti-
cal regime (in time) gets larger, but the late-stage critical
relaxation is recovered in the long-time limit, as in the case
of spatial relaxation. When p is small enough, however, we
are not able to observe the eventual crossover to the long-
time critical relaxation within our simulation window. We
also find that the spin autocorrelation functions show a
simple scaling behavior when the time is rescaled with re-
spect to the growing time scale (with reduced string density).
That is, we have A(r)=.A(¢/ 74(p)) with the time scale 74(p)
growing with vanishing p as 7,(p) ~ p~¢ with ¢ very close to
4. As argued in detail below, the power law dependence of
& v(p), & u(p), and 7,(p) on the string density p can be
understood in terms of random walk nature of the string
motions within the limiting range of the average distance
between neighboring strings.

II. THE INITIAL GROUND STATES

We perform dynamic Monte Carlo simulations on the AFI
model on a triangular lattice using a single spin-flip Me-
tropolis kinetics at zero temperature: the spin flip without
energy cost is accepted, whereas the flip resulting in positive
energy cost is rejected. In most simulations, we use lattices
with linear dimension L=1296 (unless otherwise specified),
and employ the periodic boundary conditions in both hori-
zontal and vertical directions.

Figures 3(a) and 3(b) show examples of the initial ground
states used in our simulations. The string density p is defined
as p=Ng/L where Ny is the total number of strings. The
initial states are such that all strings are straight and evenly
distributed. Each string forms a chain due to the periodic
boundary condition in the vertical direction. Here we make a
comment on one subtle point on the string density. In the
case where one employs periodic boundary conditions along
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FIG. 4. This shows how flips of loose spins make a string move
and thereby penetrate into the initially immovable regions between
the strings. In the first (left-most) figure, one observes that if a loose
spin is flipped, while it is still a loose spin, its NN loose spins are no
longer loose spins. This can be regarded as annihilation of the loose
spins. The second and the third figures indicate that the flip of a
loose spin can create a loose spin in one of its NN sites. Finally, in
the fourth (rightmost) figure, a straight string can bend over and
penetrate into the previously frozen spin region. Encircled are the
loose spins.

both horizontal and vertical directions (i.e., in torus geom-
etry), the strings can have finite density along both directions
resulting in strings that are not parallel (in the average sense)
to the vertical direction but have finite average slope with
winding number larger than unity. Therefore for a given
string density, the ground state will further be classified into
sectors with different winding numbers. In this work, how-
ever, for simplicity, we focus only on the case of unit wind-
ing number where the strings are parallel on the average to
the vertical direction.

The relaxation proceeds via flips of the loose spins only. A
loose spin is defined as the spin whose flip costs zero energy,
and it can be identified as the spin whose six NN spins al-
ternate in their signs, which are encircled in Fig. 3(a) or 3(b).
Note that loose spins are always located at the “kink™ seg-
ments of each string. Therefore the initial loose spin density
is the same as the string density, i.e., p,(0)=p, which is the
maximum loose spin density in that sector. Between the
strings are the domains of the stripe phase which has alter-
nating lines of up and down spins. Apart from the loose spins
located at the kinks of strings, there exist no loose spins in
the stripe domains since any spin flip in the domains creates
a pair (or pairs) of defects.

Figure 4 shows some elementary processes of how flips of
loose spins make a string move and thereby penetrate into
the initially immovable regions between the strings. In the
first figure of Fig. 4, one observes that if a loose spin is
flipped, while it is still a loose spin, its NN loose spins are no
longer loose spins. This can be regarded as annihilation of
loose spins. The second and the third figures indicate that the
flip of a loose spin can create a new loose spin in one of its
NN sites. The number of the loose spins is therefore not
conserved. Through several steps of processes, a straight
string can bend over and penetrate into the previously frozen
spin region. Shown in Fig. 5 are snapshots of loose-spin
configurations for p=1/18.

III. RESULTS AND DISCUSSIONS

A. Spatial relaxation of spin ordering in the major sector

Equilibrium spatial correlation function (along the three
major axes) has been given by Stephenson [4] as
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FIG. 5. Snapshots of loose-spin configurations for p=1/18.

2r

C,(r)~rT" COS<T> (3)

which represents an isotropic critical decay and additional
modulation term with spatial period 3. Here, we investigate
the nonequilibrium relaxation dynamics of the system with
the initial state of p=2/3 such that all spins in each of the
three sublattices A, B, and C, respectively, have the same
sign, and hence each sublattice is fully ordered, i.e.,
my=mp=—mc=1. For convenience of simulations and scal-
ing fit, we can probe the relaxation of the spin ordering by
measuring the correlation of spins belonging to the same
sublattice along three major axes (ignoring the modulation
term): we measured the spin correlation functions at time ¢

cA<r,r>=<Eoi<r>ai+r<r)> / W), r=3n, @)
icA

where n=0,1,2,3, ... . This correlation function is obtained
from the average over measurements along three major di-
rections of the triangular lattice. One can measure Cg(r,1)
and Cq(r,7) in the same manner. It is expected that these
three correlation functions be the same due to the permuta-
tion symmetry of the three sublattices. In accordance with
this expectation, we find their numerical results almost indis-
tinguishable, and the presented result is the average of these
three functions, denoted by C(r,z). By definition, then, we
have C(0,7)=C(r,t=0)=1. Since two spins separated by
large distance are uncorrelated, C(r,7) will depend only on
time 7 for large distances C(r,t)Emé(t) for r> &(t), where
mg(1) is the sublattice magnetization and &(z) is the correla-
tion length at time .

We find that C(r, 1) obeys a critical dynamic scaling of the

form
C(r,t) - mg(t) =r "F(rl&(r)), m=1/2, (5)

where F(x) is the scaling function. The algebraic factor r~”
reflects the critical equilibrium spin correlation. The correla-
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tion length &(¢) is found to exhibit a diffusive growth in time
as

&) ~ 1'%,

Using the critical scaling (5), one can readily show that the
sublattice magnetization mg(z) exhibits a power-law relax-
ation

z=2. (6)

my(t) ~ 7~ 1, (7)

B. Spatial relaxation of spin ordering
in the minor sectors

Contrary to the initial state with p=2/3, as one can see
from Fig. 3(b), in the initial states belonging to the minor
sectors, spins in each sublattice no longer have the same
sign. Instead, we have an obvious anisotropy in the spatial
spin arrangement in the initial state. Interestingly we find
that the anisotropy in the spatial correlation persists even in
the long time limit of equilibrium. Here, we look at the non-
equilibrium relaxation of this spatial spin correlation along
the following three directions of main interest: along the ver-
tical direction parallel to the strings in the initial state, along
the horizontal direction perpendicular to the vertical direc-
tion (along one of the three triangular axes), along one of the
remaining diagonal triangular axes (which lies 60° north of
east).

1. Vertical direction

To begin with, let us deal with the spatial spin correlation
along the vertical direction defined as

N

1 A
Curn=— S o)A ), F=9\3n, (8)
i=1

where the separation 7 lies along the vertical direction (¥
being the unit_vector in the vertical direction) with magni-
tude r=|r| =\3n withn=0,1,2, ... . Figure 6 shows C\(r,?)
for p=2/3,1/3,1/6,1/9,1/18 in log-log scale. Note that
there exists some range of distance r in which Cy(r,1) shows
the same r dependence for different times, i.e., the correla-
tion function exhibits no time dependence. This means that
the system is equilibrated within this distance. Naturally this
equilibrated region becomes larger at longer times. Therefore
Cy(r,1) maps out the equilibrium spin correlation function
C,y(r) for each p. For example, Fig. 6 demonstrates that
C,y(r) for p=2/3 exhibits a critical relaxation C, y(r) ~r~"
with »=1/2, in accordance with the theoretical prediction.
Compared to this critical relaxation for the case of p=2/3,
the spatial relaxation of C,(r) in the minor sectors becomes
much slower with smaller p. It is expected that for minor
sectors the system relaxes with slower rate due to fewer
strings and hence fewer loose spins. It is interesting to ob-
serve in Fig. 6 that another type of spatial relaxation in
C,y(r) starts to emerge in the short distance region, which
becomes larger as p becomes smaller. At long distances, for
some values of p such as p=1/3,1/6,1/9, C,(r) is
observed to cross over to the same critical relaxation
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10 100
r

FIG. 6. Cy(r,t) for p=2/3,1/3,1/6,1/9,1/18 (from below) in
log-log scale. In the minor sectors, critical relaxation of the equi-
librium correlation function C,y(r) starts to emerge in the short
distance region, and grows as the string density p becomes smaller.
At long distances, for values of p such as p=1/3,1/6,1/9, C, y(r)
is observed to cross over to the same critical relaxation C,y(r)
~r " with =1/2 (dotted line) as in the case of p=2/3.

C,y(r)~r " with 7=1/2 as that observed in the major sec-
tor. In fact, as discussed below (Sec. II C2), this short-
distance relaxation is a new critical relaxation which arises
from unrestricted random walk motion of the strings. How-
ever, for further reduced density p=1/18 the recovery of the
late-stage critical relaxation is not yet observed since for this
small value of p the spatial extent of the early-stage critical
relaxation becomes very large. However, it is certain for this
case that the late-stage critical relaxation will be eventually
observed with bigger system size and longer simulation time.

As demonstrated in Fig. 7, we find that C,y(r) obeys a
simple scaling of the form C, \(r)=f, y(r/ &, (p)), where the
length scale &, (p) is defined as C, y(r=£,y)=C, where C,
is set to be Cy=0.5 for convenience. Note from Fig. 6 that by
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FIG. 7. A simple scaling fit of the form C, y(r)=f, (r/&, y(p))
with &, y(p) defined as C,y(r=£&,y)=Cy (Cy is set to be Cy=0.5).
The inset shows the &, (p) vs p~! where &, y(p) is found to grow
with smaller p diverging as &, ,(p) ~p~¢ with ¢=2.0.
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the above definition of &, 1(p), &, y(p) is inside the first criti-
cal region for each p<<2/3. This equilibrium correlation
length &, y(p) is found to grow with smaller p and tend to
diverge as &, y(p) ~p~® with ¢=2.0, as shown in the inset of
Fig. 7. The scaling of the critical part of C, y(r) for various
values of p including p=2/3 implies that the amplitude of
the critical relaxation is inversely proportional to the string
density p since C,(r)~p~'r72~(rp?)712. As for the
power law divergence of &, y(p) ~p~2 in the limit of small p,
we can argue as follows. The average distance &, between
neighboring strings scales as iy~ 1/p. Now the horizontal
fluctuations of the strings can be regarded as a random walk
in the equilibrium situation, and therefore the typical length
scale along the direction of the strings that corresponds to a
horizontal fluctuation A can be considered as the spin corre-
lation length &, y(p). Therefore from the random walk nature
we can write as iy~ &'}(p) which gives &, (p) ~hg~1/p*
consistent with the above simulation results.

The shape of the scaling function f,y(x) is such that,
while f,(x) is given by a power law decay f, y(x)~x""?
for x>1, it is found to be well fitted by the form
fev(x)=1-x7=exp(—x?) with y=0.5 for x<1. The above
scaling of C, y(r) with respect to the length &, (p) tells us
that the early-stage critical spatial region diverges with van-
ishing p as p~2. As we see below, this emergence and growth
of the early-stage critical relaxation and the final crossover to
the late-stage critical relaxation in both spatial and temporal
regimes is one of the main features of the relaxation in the
minor sectors. Short distance behavior of the scaling function
fey(x)=1-x"with y=0.5 can also be understood in a simi-
lar manner as follows. As before we assume that each string
performs a random walk in the horizontal direction with the
restriction of maximal displacement of order A, Now,
we take a short bar of length r parallel to the vertical
direction and consider the probability P(r) that the bar
crosses a string. Since the horizontal displacement Ak of
the string for the vertical length scale r corresponding
to the length of the bar, scales as Ah~r'?, we have
P(r) o Ah/hy~pr'/. Therefore C,(r) at short distance r
can be written as C,y(r)=1(1-P(r))+(=1)P(r)=1-2P(r)
=1-cpr'?=1-c(r/ &, (p))"* with ¢ being a constant. This
explains the short-distance behavior of f, (x)=1-x? with
v=0.5.

The nonequilibrium spatial correlations along the vertical
direction are expected to follow the scaling behavior

CV(r’ t) = Ce,V(r)gV(r/§V(t7p)) s (9)

%112 is the diffusively growing length scale.

172 as x— oo

where &y(1,p) ~p
The scaling function g (x) behaves as gy (x) ~x
and g(x)=1 as x—0.

2. Horizontal direction

Next we go to the spatial spin correlation function Cy(r, 1)
along the horizontal major axis
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0 1 2 3 4 5 6 7 8 9 10

FIG. 8. Cy(r,tma) vs pr for three different values of
p [p=1/3 (circle), 1/6 (square), 1/9 (triangle)] at #,,,,=81,920
(mes). Solid line represents C,y(r)=Ay(pr)~? cos(mpr) with
Ap=0.35. For p=1/9 the equilibrated region is shorter compared to
the cases of the other two values of p.

N

1 -
Cy(r,t)= N > ot)o,it) |, r=ni,
i=1

(10)

where the separation 7 lies along the horizontal axis (£ being
the unit vector in the horizontal direction). Here, in contrast
to the case of vertical direction, we observe a clear modula-
tion in the correlation function with spatial period propor-
tional to p~' which is of the order of the spacing between
neighboring strings. As shown in Fig. 8, from the behavior of
the spatial correlation in the long time limit, we find that the
spatial correlation function C, (r) at equilibrium can be fit-
ted by

-112,-172 (11)
where the modulation factor of cos(p7rr) clearly reflects the
existence of strings with average separation dg~ 1/p. The
expression (11) is a generalization of Eq. (3) which holds for
p=2/3 to the case of minor sectors with p<<2/3. We men-
tion that in a recent independent work [26] Eq. (11) was
analytically obtained by viewing the present model as the
one-dimensional coupled chains of topological objects.
Equation (11) can be rewritten in a scaling form as

Con(r) ~p cos(pmr),

Ce,H(r) =fe,H(r/§e,H(p)) (12)

with the scaling function f, ;(x) ~ x> cos(mx) and the cor-
relation length scale &, 4(p)~1/p.

Now, the nonequilibrium spatial correlations along the
horizontal direction are expected to obey the scaling behav-
ior

Cy(r,t) =C, y(r)gu(r/éy(t,p)), (13)

where &,(t,p) ~pt'? is the diffusively growing length
scale as in the case of the spatial correlation along the
vertical direction. The scaling function gy(x) behaves as
gn(x) ~x'? as x—o and gy(x)=1 as x—0.
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pr

FIG. 9. Cp(r,tymay) Vs pr for p=1/3 (circle) and p=1/6 (square)
at  1,,,=81,920 (mcs). Solid line represents (-1)"C, p(r)
=Ap(pr)™12 cos(mpr/2) with Ap=0.5.

3. Diagonal direction

Finally, we consider the spatial spin correlation Cp(r,1)
along the diagonal triangular axis at 60°

1/ < 13
> N
Cp(r,1) = N > oo, ), 7= (—,—)n. (14)
i=1
Along this axis, we get the following form of equilibrium
correlation function (see Fig. 9):
-1/2,-112 p r
C.p(r)~p~"r COS(EW?‘)(— 1) (15)
which fits very well the long time limit of Cp(r,?). Here, r
measures the distance along the diagonal axis with the unit
lattice constant set equal to 1. Nonequilibrium relaxation of
the spatial correlation Cp(r,t) satisfies a critical dynamic
scaling that is similar to the case of the correlations along the
horizontal axes. The equilibrium spatial correlation functions

along the three different directions can be combined into the
following form:

C,(F) ~ r 2 cos(pmx) (= 1), (16)

where = (x,y) and r=|r|.
C. The spin auto-correlation function

1. The major sector

We have measured the relaxation of the spin auto-
correlation function A(7) which measures temporal correla-
tion between the initial spin configuration and the spin con-
figuration at time #:

N

A =1{ 2 0000

i=1

(17)

For the case of the dominant sector, each sublattice is fully
ordered for the initial state. Therefore it is easy to show that
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FIG. 10. (a) The relaxation of the spin autocorrelation function
A(r) for various values of p having the same values as in Fig. 6. As
p is further reduced from p=2/3, the early-stage critical relaxation
starts to appear in the short time regime. However, for all p, we
observe that the relaxation tends to A(r) ~ 72~ 18 (dotted line)
in the late time regime. (b) A scaling attempt of A(z) for various
values of p with respect to the characteristic time scale 74(p) de-
fined as A(t=74(p))=0.5, where we find an excellent scaling col-
lapse with a time string-density superposition A(z)=.A(t/ 74(p)). The
inset shows 7,(p) vs p~! exhibiting a power law divergence of
74(p) ~ p~? with =3.96 for small values of p=<1/9.

AW = 30ma(0) + mylo) =m0, (18)

where my(t), mg(r), and m(t) are the sublattice magnetiza-
tions, and we assumed that the initial spin configuration for
p=2/3 is such that all spins are up (+1) for the sublattices A
and B, and all spins are down (—1) for the sublattice C.

We have shown before that the critical dynamic scaling
leads to the power law relaxation of the sublattice magneti-
zation m/%(t):mé(t):mzc(t)~z“’7/Z at long times with
n/z=1/4, and hence A(f) ~ 7%~ 8 in accordance with
the result shown in Fig. 10(a).
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2. The minor sectors

In the case of minor sectors, as in the spatial spin corre-
lation functions, we see in Fig. 10(a) that as p is reduced
from p=2/3 the early-stage critical relaxation starts to ap-
pear in the short time region, and expands its time region as
p is further reduced. The behavior of A(r) eventually crosses
over to the same critical decay A(f) ~ ¢!/ as observed in the
dominant sector. This late-stage critical relaxation, for ex-
ample, is seen for the last one decade of time for the case of
the string density p=1/18. Shown in Fig. 10(b) is a scaling
attempt of A(z) for various values of string density p with
respect to the characteristic time scale 74(p) defined as
Alt=74(p)]=0.5. The scaling collapse is excellent: the spin
autocorrelation function obeys a time string-density superpo-
sition A(¢)=.A(¢/ 74(p)). It is demonstrated in the inset of Fig.
10(b) that 74(p) shows a power law divergence as
74(p) ~p~® with ¢=3.96 for small values of string density
p=1/6.

The shape of scaling function A(x) with 7=1¢/74(p) ex-
hibits a stretched exponential relaxation A(7)=exp(-7">°) for
7<1 and a critical relaxation A(7) ~ 78 for 7> 1. One can
interpret 74(p) as the time scale at which the critical relax-
ation sets in. The power law dependence of 7,4(p) on the
string density p, i.e., 74,(p) ~ p~® with ¢»=3.96 can be under-
stood as follows. Typical relaxation time for the spin auto-
correlation function corresponds to the time scale during
which a certain point on the string crosses the average dis-
tance h, between neighboring strings. Since, due to the
random walk nature of the string configuration at short dis-
tance, the horizontal displacement h(y,7) of a certain point
on the string as a function of the vertical distance y can be
thought of as satisfying an Edward-Wilkinson-type equation

dh _Fh

5=D§+7}(y,t), (19)
where D is the diffusion coefficient and 7(y,?) representing
an uncorrelated Gaussian noise with zero mean. Therefore,
typical relaxation time 74(p) for the spin autocorrelation
would correspond to the time scale of relaxation of the os-
cillation of the string at the typical scale of an inverse wave
vector which is just the spatial correlation length &, y(p).
Hence, 74(p) would scale in proportion to the square of the
correlation length 74(p) ~ fiv(p), which, together with
&.(p)~1/p% gives 74(p)~1/p* in reasonable agreement
with our simulation result of ¢==3.96.

Now as for the short time (7<<1) behavior of the scaling
function of the autocorrelation function A(7)=exp(-7""%)
=1-7"4 we can simply reverse the above argument for the
relaxation time versus the inverse string density 1/p or the
transverse [height A(y)] fluctuation scale. That is, we can
safely assume that the autocorrelation function at short time
scale [shorter than the relaxation time scale 1< 7,(p)] goes as
A =1[1-P@)]+(-1)P(r)=1-2P(r), where P(r) denotes
the (average) probability that a string crosses a typical point
in the system. Since the dominant fluctuations of the strings
are along the horizontal direction, it is simple to see that P(r)
is proportional to the average transverse displacement up to
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time ¢. However, this is simply proportional to ¢'/# from the
argument given above, which gives a behavior in agreement
with our simulation results.

Now, when the typical horizontal fluctuation of the strings
reaches the scale of separation between nearest neighbor
strings, we can no longer apply the above picture of nonin-
teracting fluctuating strings and we should take into account
the repulsion between neighboring strings. It is known that
the transverse fluctuations exhibit a logarithmic divergence
corresponding to the logarithmic roughening in two dimen-
sions [27]. We believe that this logarithmic divergence will
correspond to the power law relaxation of the spin autocor-
relation function in the late time regime.

D. The loose spin density

For p=<2/3 the initial loose spin density is the same as
the string density p. Figure 11(a) shows the relaxation of the
loose spin density p,(¢) for various values of p. p,(¢) exhibits
a slow monotonic decay toward a nonvanishing asymptotic
value p;(t=0)(p) for each p. Previously, we have shown that,
for the case of the dominant sector, p,(f) shows a power
law relaxation approaching its equilibrium value as p;(7)
=p,()+const * with @=1.0. The asymptotic value p,(«)
was found to be p;(°) =0.29. As for the initial states belong-
ing to the minor sectors, one may get a hint from Fig. 4 that
the dominant process for short times will be independent
flips of well separated loose spins. Then each flip will re-
move two loose spins. If only this process were to continue,
then the asymptotic value p,() would be p/2. As shown in
Fig. 11(b), the time region in which p,(z) exhibits a power
law decay p,(t)=p/2+const 12 is observed, becomes ex-
panded as p is further reduced since the initial loose spin
density is reduced accordingly. However, this relaxation
crosses over to the same relaxation p;(o)+const ™! as ob-
served in the case of p=2/3. The asymptotic value p;()
becomes very close to p/2 as p becomes very small. The
noncritical time region becomes longer as p is getting
smaller. But in this case it is rather difficult to measure the
noncritical time region with varying p.

E. The persistence property

How long does a spin maintain its initial state without any
flip during the time evolution? This question touches upon an
interesting nonequilibrium dynamic aspect known as the per-
sistence. This persistence property can be quantified by mea-
suring p,(t), the number density of spins which are never
flipped up to time f. It is found that for a variety of spin
systems p,(t) exhibits power law relaxation in time
p,(1)~1". The new nonequilibrium exponent 6 has been
analytically or numerically computed. For example, in the
zero-temperature coarsening of the ferromagnetic Ising
model §=3/8=0.375 in one dimension [28], and #=0.22 for
the two-dimensional square lattice [29].

In order to compute the density of persistent spins, we
first define a local quantity n;(t) =[1+0;(0)o;(z)]/2 [30] for
each lattice site i. Obviously, n;(0)=1 for all sites. If the
Ising spin o;(z) is flipped at time 7, then n;(r) becomes zero.
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FIG. 11. (a) The relaxation of the loose spin density p,(¢) for
various values of the string density p. p,(t) exhibits a slow mono-
tonic decay toward a nonvanishing asymptotic value p;(t=%)(p) for
each p. (b) p(t)=p/2 vs t for p=2/3,1/3,1/6,1/9,1/18 (from
above). We observe a power law decay p,(f)=p/2+constr /2,
where the power law region becomes expanded as p is further re-
duced (because the initial loose spin density is reduced accord-
ingly). But this relaxation crosses over to the same relaxation
pi()+const £~ as observed in the case of p=2/3.

Once it happens, we let n;(f) maintain the value zero even
after regardless of subsequent flips of o(¢). If o,(¢) is never
flipped up to time ¢, then n,(t)=1. Therefore the number of
persistent spins at time ¢ is the sum of the sites with
ni(t)=1. Hence p,,(t)z(Eﬁiln[(t))/N.

Shown in Fig. 12(a) is p,(#) for various values of p. For
the case of the dominant sector, after an early transient re-
laxation p,(7) exhibits an exponential relaxation, which is
well fitted by p,(t)=Agexp(-t/7)) with A;=0.52 and
79==14.65. This exponential decay can be attributed to fast
flips of loose spins highly populated in the initial configura-
tion. As p is reduced from p=2/3, the initial population of
loose spins is reduced, and at the same time, the zero-loose
spin domains between strings are enlarged. We find that the
slow relaxation of pp(t) for the case of minor sectors can be
well fitted by a stretched exponential function of the form
pp(t)=A exp(~(/ 7)P) with B<1. The amplitude A remains
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FIG. 12. (a) The relaxation of the persistence spin density p,,(7)
vs time ¢ for various values of p. (b) A scaling attempt of time
string-density superposition on p,(r) with respect to the character-
istic relaxation time scale 7,(p), where we find a strong violation of
the scaling due to the p dependence of the stretching exponent S.
The inset shows 7.(p) vs (p—p.)~' which exhibits a power law
divergence of 7,(p)~ (p—p.)~" with p.=0.004 and y=3.23.

almost the same for p=<1/9. But the exponent 8 shows some
dependence on p: it becomes smaller as p is reduced. Be-
cause of this p dependence of the exponent B3, the time
string-density superposition for p,(t) is violated as demon-
strated in Fig. 12(b).

Figure 13 shows snapshots of configurations of persistent
spins at different times for p=1/18. The dark regions repre-
sent the persistent spins. The white regions represent spins at
least once flipped. As this figure vividly shows, the way that
the active regions penetrate and grow into inactive regions is
spatially heterogeneous. This kinetic heterogeneity is per-
haps the underlying reason for the p-dependence of the ex-
ponent 8. We have looked at the p dependence of the relax-
ation time 7.(p) which for convenience is defined as
p,lt=7,(p)]=e"'. We have obtained the data for smaller p up
to p=1/30. The relaxation time 7,(p) increases rapidly with
smaller p. We observed a small but clearly discernable cur-
vature in the increase of 7,(p) for small p<1/9. This may
indicate a power law divergence of the relaxation time at a

PHYSICAL REVIEW E 75, 021106 (2007)

t=2560mcs

t=10240mcs

FIG. 13. Snapshots of configurations of persistent spins at dif-
ferent times for p=1/18. Dark regions represent the persistent
spins, while white regions represent spins which were flipped at
least once.

nonvanishing string density p,, i.e., 7.(p)~(p-p.) Y. We
have tested this interesting possibility in the inset of Fig.
12(b) and we find p,=0.004 gives a good straight line in a
double-log plot of 7, versus (p—p.)~' with the exponent
v==3.23. The slow relaxation exhibited by the persistent spin
density is reminiscent of that found in glassy models.

IV. SUMMARY AND CONCLUDING REMARKS

The string picture obtained from a dimer covering in the
dual lattice enables one to classify the macroscopically de-
generate ground states into sectors each of which has a
unique value of the string number density p. The dominant
sector is the one with p=2/3, which has the maximum num-
ber of ground states. Other sectors are called the minor sec-
tors. The kinetics is nonergodic in the sense that the time
evolution within the ground state manifold is confined to the
very sector to which the initial configuration belongs, due to
the string number conservation. Within each sector the dy-
namics appears to be ergodic: the nonequilibrium initial state
evolves toward the (restricted) equilibrium state. Therefore
the kinetics exhibits initial state dependence. If the system is
quenched to the zero-temperature from an initial state “out-
side” the ground state manifold (a typical example is the
random disordered initial state), the minor sectors will never
be reached. The system always evolves toward the dominant
sector. In order to reach the minor sectors the initial state
should be one of the corresponding ground states. The situ-
ation is somewhat analogous to the nonequilibrium kinetics
observed in the spherical p-spin model [31]. In this model,
starting from the random initial state the system always
evolves toward the highest TAP states [32], and cannot pen-
etrate into the lower TAP states. In order to probe the dynam-
ics within the TAP states [33] one has to start with one of the
TAP states.
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In this work, we have attempted to characterize the non-
equilibrium kinetics observed within the minor sectors with
p<2/3 of the ground state ensemble of the triangular AFI
model. The time evolution proceeds via flips of loose spins
only. As the string density is reduced, the number of loose
spins becomes smaller. At the same time the zero-loose-spin
domain becomes correspondingly larger. In addition, it is an-
ticipated that there will be some cooperative effects present
in the dynamics of loose spins. As the string density is re-
duced from p=2/3, we observe an anisotropy in the equilib-
rium spatial correlation function reflecting the anisotropic
fluctuations of the strings and mutual repulsion of the strings.
This is in sharp contrast to the case of the dominant sector of
p=2/3 where all the equilibrium correlations along the three
major axes are the same (isotropic). In the case of minor
sectors (p<<2/3), the equilibrium spin correlation function
along the vertical direction starts to develop a critical relax-
ation at short distances, and crosses over to the late-stage
critical relaxation at long distances. This early-stage critical
region becomes larger as the string density is further re-
duced, with the crossover length scale exhibiting a diver-
gence of £, y~ p~2. While on the other hand, along the hori-
zontal direction, the length scale is characterized by the
typical separation between strings as &, ;~ p~'. Therefore in
typical simulations the early-stage critical relaxation be-
comes practically dominant for small enough p (for example
p=1/18 in the present simulation), pushing the late-stage
critical relaxation outside the simulation window.

The equilibrium spin correlation functions for different
minor sectors exhibit a scaling behavior when the distance is
rescaled with respect to the size of the early-stage critial
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relaxation region. The same phenomenon of the appearance
and growth of the early-stage critical relaxation and cross-
over to the late-stage critical relaxation manifests in temporal
relaxation of the spin autocorrelation function as well. The
time duration over which the early-stage critical relaxation is
observed tends to diverge algebraically with vanishing string
density. In the limit of low string density, the scaling behav-
ior in the nonequilibrium relaxation (fluctuation) dynamics
of the system can be simply explained in terms of random
walk nature of the strings within the length scale of average
separation between neighboring strings. In this regard, we
may also remark that the system, at equilibrium in the limit
of low string density, could be mapped onto the exactly solv-
able model system of quantum (1+1)-dimensional gas of
hard core bosons with repulsive delta function potential of
infinite strength [34]. The persistence property exhibits a
nonequilibrium glassy relaxation with typical relaxation di-
verging at a small nonvanishing string density.

We emphasize that in the present work we have focused
only on the case of unit winding number for the strings. In a
more general case of nonzero slope sectors, further work is
needed to identify properties of the nonequilibrium relax-
ation dyamics within a given ground-state sector.
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